§4. Bruck's examples

We know left alternative and left Moufang are the same in characteristic # 2. In this section we construct examples of left alternative division rings of characteristic 2 which are not left Moufang, much less alternative.

We begin with any unital commutative associative ϕ -algebra Ω of characteristic 2, and any ϕ -linear mapping s of Ω into itself. We define an algebra $A(\Omega,s) = \Omega 1 \oplus \Omega U$

$$xy = (\alpha 1 \oplus \beta u)(\gamma 1 \oplus \delta u) = (\alpha \gamma + s(\beta)\beta)1 \oplus (\alpha \delta + \beta \gamma)u.$$

This is like the Cayley-Dickson formula, except we use g_{γ} instead of the expected $g_{\beta}(\gamma)$. For fixed $g_{\beta}(\gamma)$ this expression is linear in γ and $g_{\gamma}(\gamma)$ and $g_{\gamma}(\gamma)$ is $g_{\gamma}(\gamma)$ -linear (though $g_{\gamma}(\gamma)$ is only g_{γ} -linear, due to the presence of the $g_{\gamma}(\gamma)$).

4.2 Lemma. $A(\Omega,s)$ is always left alternative, but is left Moufang iff $s(q(x)\omega) = q(x)s(\omega) \text{ for all } \omega, \alpha, \beta \in \Omega \text{ where } q(x) = \frac{2}{\alpha} + s(\beta). \text{ If } \Omega \text{ contains }$ no nilpotent elements, the left Moufang condition is that s = L for $\sigma = s(1)$.

Proof. To check left alternativity $L_{x^2} = L_x^2$, note that for $x = \alpha 1 + \beta u$ we have $x^2 = (\alpha^2 + s(\beta)\beta)1 + (2\alpha\beta)u = q(x)1$, therefore $L_{x^2} = q(x)I$ since $L_{u1} = \omega I$ (BEWARE: $L_{uu} \neq \omega L_u$ since R_y is not Ω -linear!), and $L_x^2 = \{\alpha I + L_{\beta u}\}^2 = \alpha^2 I + L_{\beta u}^2 = q(x)I$ since we are in characteristic 2. (Note

$$L_{\delta u} \triangleq \begin{pmatrix} 0 & s(\beta) \\ \beta & 0 \end{pmatrix} \text{, } L_{\beta u}^2 = \begin{pmatrix} s(\beta)\beta & 0 \\ 0 & \beta s(\beta) \end{pmatrix} \text{ relative to the obvious } \Omega\text{-basis for A).}$$

Thus left alternativity is automatic.

However, the left Moufang axiom $L_{x(yx)} = L_x L_x$ will only be satisfied for certain kinds of s. Indeed, $x^2 = q(x)L$ yields $x \circ y = q(x,y)L$ for $q(x,y) = q(x+y) - q(x) - q(y) = 2\alpha \gamma + s(\beta)\delta + s(\delta)\beta = s(\beta)\delta + s(\delta)\beta$, so $L_{x(yx)} = L_{x(xy+yx)} - L_{x^2y} \qquad \text{(left alternativity)} = L_{q(x,y)} - L_{q(x)} = L_{x^2y} - L_{x^2y} \qquad \text{(left alternativity)} = L_{q(x,y)} - L_{q(x)} = L_{x^2y} - L_{x^2y} = L_{x^2y} - L_{x^2y} - L_{x^2y} = L_{x^2y} - L_{x^2y} - L_{x^2y} = q(x,y)L_{x^2} - q(x)\gamma - L_{x^2y} = L_{x^2y} - L_{x^2y} - L_{x^2y} = q(x,y)L_{x^2} - q(x)L_{y^2} = q(x,y)L_{y^2} - q(x)L_{y^2} - q(x)L_{y^2} - q(x)L_{y^2} = q(x,y)L_{y^2} - q(x)L_{y^2} - q(x)L$

In particular s commutes with $q(\omega 1) = \omega^2$, with $q(\omega u) = \omega s(\omega)$, with $q(u) = s(1) = \sigma$, and with $q(u,\omega u) = \sigma \omega + s(\omega)$, so that $\{\sigma \omega + s(\omega)\}s(\omega)$ $= s(\{\sigma \omega + s(\omega)\}\omega) = s(\{\omega^2 \sigma + \omega s(\omega)\}1) = \{\omega^2 \sigma + \omega s(\omega)\}s(1) = \omega^2 \sigma^2 + \sigma \omega s(\omega)$. Comparing gives $s(\omega)^2 = \omega^2 \sigma^2$. In characteristic 2 this implies $\{s(\omega) - \sigma \omega\}^2 = 0$, so if Ω has no nilpotent elements $s(\omega) = \sigma \omega$ for all ω .

4.3 Lemma. $\Lambda(\Omega,\sigma)$ is a left alternative division algebra iff (i) Ω is a field, (ii) s-L $_{\Omega}2$ is bijective on Ω for all ω .

Proof. Certainly Ω must be a field: it is a commutative associative subalgebra of Λ , and if $\alpha+\beta u$ is an inverse in Λ of $\omega \in \Omega$ then α is an inverse of ω in Ω .

Assume from now on Ω is a field. "Division algebra" means all L_x , R_x for $x \neq 0$ are bijective. Now L_x is bijective iff $L_x^2 = q(x)I$ is bijective, so the condition that all L_x for $x \neq 0$ be bijective is that $q(x) \neq 0$ for $x \neq 0$. In particular, this is satisfied when (i) and (ii) hold: clearly $q(x) = \alpha^2 + \beta s(\beta) = 0$ is impossible for $\beta = 0$ (since then $\alpha \neq 0$), while if $\beta \neq 0$ it would imply $s(\beta) = -\alpha^2/\beta = (\alpha/\beta)^2\beta$ (characteristic 2!) and therefore $s-L_{\infty}2$ is not bijective for $\omega = \alpha/\beta$ since it kills β .

Turning now to the R's, if $x = \alpha + \beta u$ has $\beta = 0$ then $x = \alpha 1$ and $R_x = \alpha T$ is clearly bijective. If $\beta \neq 0$ then $x = \beta(\beta^{-1}\alpha 1 + u) = \beta y$, so $R_x = \beta R_y$ is bijective iff R_y is for $y = \omega 1 + u$. But

$$R_{y} = \omega \mathbb{I} + R_{u} = \begin{pmatrix} \omega & s \\ 1 & \omega \end{pmatrix} \qquad \text{has} \qquad R_{y}^{2} = \begin{pmatrix} \omega^{2} + s & \omega s + s \omega \\ 2\omega & s + \omega^{2} \end{pmatrix} \qquad = \begin{pmatrix} s - \omega^{2} & \omega s + s \omega \\ 0 & s - \omega^{2} \end{pmatrix}$$

in characteristic 2, which is invertible iff s-1. $_{\omega 2}$ is invertible.

4.4 Theorem. If Ω is a field of characteristic 2, with nontrivial involution *, and $\alpha = \alpha *$ is a symmetric nonsquare in Ω , then $A(\Omega,s)$ for $s = *+L_{\alpha}$ is a left alternative division algebra which is not left Moufang.

Proof. Such an algebra is not left Moufang by 5.2 because $s \neq L_{\sigma} : \sigma = s(1)$ = 1*+2 = 1+ α , $L_{\sigma} = \text{L+L}_{\sigma} \neq \text{*+L}_{\sigma} = s$ since * \neq I is nontrivial by hypothesis.

Since Ω is a field, $A(\Omega,s)$ will be a division algebra by 4.3 as soon as all $s-L_{\omega 2}=*+L_{\alpha-\omega 2}$ are bijective, i.e., $*+L_{\delta}$ is bijective for all $\delta=\alpha-\omega^2$. Now $(*+L_{\delta})(*-L_{\delta *})=(*-L_{\delta *})(*+L_{\delta})=I-L_{\delta \delta *}=L_{1-\delta \delta *}$ (recall $*L_{\omega}=L_{\omega *}*$) is invertible since $1-\delta \delta *$ is nonzero in Ω no matter what $\delta=\alpha-\omega^2$ we choose: if ω is symmetric, $\omega^*=\omega$, then $\delta^*=\delta$ since $\alpha^*=\alpha$ by hypothesis, so $\delta \delta^*=1\Longrightarrow \delta^2=1\Longrightarrow \delta=1\Longrightarrow 1=\alpha-\omega^2\Longrightarrow \alpha=1+\omega^2=(1+\omega)^2\in\Omega^2$ (heavily using characteristic 2), contrary to our choice of α as a nonsquare, while if Ω is nonsymmetric, $\omega+\omega^*\neq 0$, then $1=\delta \delta^*=\{\alpha-\omega^2\}\{\alpha-\omega^*\}=\alpha^2+(\omega\omega^*)^2-\alpha(\omega+\omega^*)^2$ would imply $\alpha(\omega+\omega^*)^2\in\Omega^2$, hence $\alpha\in\Omega^2$ (recall $\omega+\omega^*\neq 0$), again contrary to choice. Thus $1-\delta \delta^*\neq 0$ is invertible in all cases, so all $s-L_{\omega^2}=*+L_{\delta}$ are hijective.

4.5 Example. As a specific example, take $\Omega=\phi(x)$ for any field ϕ of characteristic 2. Then $f(x)*=f(\frac{1}{x})$ is a nontrivial involution on $\Omega, \alpha=x+1/x$ is symmetric but a nonsquare (since $\alpha=x(1+1/x)^2$ and x is a nonsquare by $\Omega^2=\phi^2(x^2)$).

This particular Ω and $\sigma=*+L$ lead to a left alternative division ring $A(\Omega,\sigma)$ which is not left Moufang.

AIV.4 Exercises

- 4.1 Show $\Omega \stackrel{5}{\to} \Omega$ satisfies $s(q(x)\omega) = q(x)s(\omega)$ for all $q(x) = \alpha^2 + \beta s(\beta)$ iff (i) $s(\alpha^2\omega) = \alpha^2 s(\omega)$, (ii) $s(s(\omega)) = \sigma^2\omega$, (iii) $\{s(\omega) \sigma\omega\}^2 = 0$.
- 4.2 Show directly R_x is invertible for x = 8u iff s is bijective; if $\alpha \neq 0 \text{ show } x = \alpha y, \text{ where } R_y = I + R_{\gamma u} \text{ is bijective iff } s + L_{\gamma}^{-2} \text{ is bijective.}$